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The influence of screen geometry in diflraction by a 
circular aperture 

H. S. TAN 
Department of Physics, University of Malaya, Kuala Lumpur, Malaysiz 
MS. received 9th November 1967, in revised form 11th January 1968 

Abstract. An edge-current theory, valid for high frequencies, is derived for the 
problem of electromagnetic diffraction by a circular aperture in a thin conal screen. 
Calculations of the axial and aperture field are compared with experimental measure- 
ments and with the Rayleigh approximations. For the angle of inclination CI greater 
than 90" it is found that the non-planar screen geometry has little effect on the 
diffracted field, except for the reflection interaction. For s( < 90" the fields in and 
near the aperture are drastically affected, but elsewhere behind the aperture the field 
shows little change. The  edge-current theory predicts the field accurately in all cases 
except for the reflection interaction. 

1. Introduction 
The influence of screen geometry in electromagnetic diffraction by a slit aperture in a 

non-planar screen has been discussed by Tan (1967), who compared results from an approxi- 
mate solution of the integral equation with experimental measurements and with Kirchhoff's 
theory. The non-planar slit aperture is essentially a scalar problem, but the corresponding 
non-planar circular aperture is a much more difficult vector problem whose exact solution 
has not been attempted. Braunbek (1959) has derived approximate formulae for the electric 
and magnetic fields E and I4 on the axis of a circular aperture formed by the envelope of a 
system of half-planes inclined at an angle CI to the axis. His method was to assume Kirch- 
hoff boundary values for E and H in the aperture, and to add corrections by fitting half- 
plane values over a small annulus on the non-planar screen and in the aperture. Tan  (1968) 
has suggested an edge-current theory for this problem, using concepts generalized from 
Millar's (1955) method, and has applied it to diffraction by a circular aperture formed by 
the envelope of a system of wedges. The calculations show good agreement with experi- 
mental measurements of the aperture and axial electric fields for several screen geometries. 
It was found that the diffracted fields are insensitive to changes in the wedge angle and to 
changes in the angle of inclination of the screen on the image side, provided that the sum 
of these angles is kept constant. However, the geometry of the screen on the source side 
has a large effect on the aperture field. 

This paper investigates further the effect of screen geometry on diffraction by a circular 
aperture in a thin conal screen. Comparison with the wedge-shaped screen and with the 
thin plane screen and with Rayleigh's approximations (which takes no account of the 
shape and nature of the screen), may indicate the relative importance of screen and edge 
geometry in the diffraction process. An improvement to the edge-current theory is obtained 
by including a first-order interaction between the fields diffracted by diametral points on 
the aperture rim. The order of accuracy of the edge-current theory is up to order (ka)-lI2,  
where k is the wave number and a the aperture radius, so that this approximation theory 
is valid for high frequencies. 

Some experimental measurements are presented for comparison with theory. Com- 
parisons have been made in respect of (i) the electric field intensity and phase along two 
orthogonal diameters in the aperture, the E- and H-plane diameters, parallel and perpen- 
dicular, respectively, to the incident electric field vector, (ii) the electric field intensity 
along the axis of the aperture. Only one aperture size, ka = 10 (corresponding to an 
aperture diameter of 3.18 wavelengths) was used. The  angle of inclination of the non- 
planar screen, CI, was varied, the five angles chosen being 48", 60°, 90°, 120" and 132". 

376 



Dafraction by a circular aperture 377 

2. Edge-current theory 
The  boundary value problem considered here is that of a plane electromagnetic wave 

with electric vector (0, 1, 0) exp( - ikz + iw t ) ,  normally incident on a circular aperture in a 
thin, perfectly conducting, conal screen (figure 1). A unique and exact solution is required 

Figure 1 I Geometry of diffraction problem. 

to satisfy (i) Maxwell’s equations, (ii) the boundary condition of vanishing tangential 
electric field everywhere on the screen, (iii) the edge condition, which governs the order 
of singularity of the field components at the screen edges, to ensure that the edges are non- 
radiating (Jones 1964), (iv) the radiation condition that the diffracted far field is an 
outgoing wave (Baker and Copson 1950). Since an exact solution to this problem is not 
known, we derive an approximation based on the edge-current theory which has been 
shown to give good results for planar diffraction problems (Millar 1955, 1956). 

The  edge-current theory is based on the fact that, in certain regions, the diffracted 
far field of a half-plane is a diverging cylindrical wave which can be considered to have 
been radiated by fictitious electric and magnetic currents I ,  and I, on the half-plane edge. 
If we now consider the aperture diffraction problem in figure 1, and assume that the 
aperture edge at every point behaves like a tangential half-plane, then the diffracted field 
of the aperture is given by the combined radiated fields of the currents I ,  and I, on the 
rim. In  particular, the approximate formulae for the total aperture and axial fields, to 
order (Ka)-1‘2, are given by (Millar 1955, Tan  1968) 

~ D , ( E ,  E ++T- j2n exp( - i k p )  
cos(y - 0) cos 8 sin y dB (1) d27 0 P 

Ez(% ep, 0) = - 

aD,(cl, K + + T )  2 n  exp( - ikp) 
cos(y - e )  cos 0 cos y d0 (2) 2/27 I o -  P 

E,@,, e,, 0) = 1 f 

where the asymptotic factors De and D,  are 

1 
[sec(+($ + E ) }  T sec($($ - E)}]  (4) 
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p = {Rp2 + a2 - 2aRp cos(O - Op))li2 
R = (p2 + z2)'" 

y = OP+r-sin-'  -sin(O-B,) . c 1 
Written explicitly, equation (3) becomes 

x 
sin 3% sin $+ - - cos ha cos (5) R 

a exp(-ikR) 
R cosa+cos+ 

E,(O, 0, z )  = exp( -ikz) +- 
which is identical with Braunbek's (1959) result. 

Equations (4) for the asymptotic factors are invalid when the point of observation P 
approaches the geometrical optics shadow region or the reflected ray region, since the cosine 
terms then tend to zero. The  reflected rays will travel close to the aperture plane when 
a is near IT. Hence, when a is near i n  and P lies in the aperture, De and D, have to 
be derived in an alternative way. The  required results are derived from Sommerfeld's 
exact solution of the half-plane problem (Born and Wolf 1965). The E- and H-polarized 
solutions are 
E,(Y, $)I = exp( - ikr) +air 

H Y ( Y ,  $1 .\/r 
(G[ - ( 2 k ~ ) ' ' ~  COS{&($ - a))] T G[ - ( 2 k ~ ) l ' ~  COS($($ + x ) ) ] )  (6) 

where 

G(v)  = exp(iv2)F(v) = exp(iv2) 

Figure 2. Diffraction in the aperture for GC 2 45". 

and Y, $ are the coordinates of the point of observation relative to the edge of the half-plane 
(see figure 2). For a greater than, but close to, &r and Y N a, $I = a+ &r- 6, we have, for 
6 - t o ,  
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Using the asymptotic expansions for the Fresnel integrals with large and small arguments, 
the diffracted far fields in the region of the reflected ray are then given by 

-&  T * ( ~ k a ) l / ~  exp(ti7) T ika(cos K - sin K) 
exp( - ikr - k i ~ )  

(rkr)'" 
N - 

T h e  asymptotic factors for this case are then given by the expressions in curly brackets in 
equation (8) 

3. Interaction scheme 
An improvement of the edge-current theory can be obtained by including the inter- 

action between the diffracted fields from different points of the aperture edge. As a first 
approximation, only the interaction between fields from diametrically opposite points of 
the aperture will be calculated. This is essentially the same type of interaction scheme 
used by Clemmow (1956) and Karp and Russek (1956). Using Millar's (1956) procedure, 
the integrals for the diffracted fields in the aperture, from equations (1) and (2), 

are expanded asymptotically by the method of steepest descent to give the terms 

EZd(Rp, 0,) O)] - - ~ (4 sinzop] aDe(x, E + $ , )  

OP, 0) cos2 8, (rrkaR,)1'2 

exp{-ik(a+R,)+$$r} exp{-ik(a-R,)+&irr} [ (a+R,)1/2 + ( U  - R,)'" -]+o (-q. ka (10) 

The integrand in (9) can be shown (Millar 1956) to have two stationary points A and B 
on the aperture rim, and lying on the diameter ATB in figure 1. The  first two terms of the 
asymptotic series in (10) correspond to the diffracted waves at T coming from the stationary 
points A and B. The  diffracted wave from A is considered to travel across the aperture 
and to be incident on the aperture edge at B. This incident wave at B, resolved into 
components parallel and perpendicular to the edge, is 

De(K, a+:T) 
Elld(a, 0,) = Eyd cos OB - Exd sin 0, = cos 0, 

ELd(a, 0,) = Eyd sin 0, + Exd cos Op = 0. 

exp( - 2ika + & i ~ )  
(2rrka)'I2 

(11) 

This field Eild, considered as an E-polarized plane wave incident on the half-plane edge 
at B, gives rise to the interaction field at the point (R, $) relative to the half-plane edge: 

which can be represented by an electric edge current dIe, where (Tan 1968) 

dIe p = - =  i 
exp( -2ika) De(a, ct+$n)D,(cr+&~, #) 

Ie (2.rrka)'l2 #) 
With this interaction term, the expressions for the aperture and axial fields should be 
modified by replacing De by De( 1 + p). T o  this order of approximation, the magnetic 
currents do not contribute to the interaction. Comparison with experimental measurements 
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shows that this interaction term improves accuracy considerably in regions where the dif- 
fracted field intensity is low, but elsewhere the improvement is small. Higher-order 
interactions would not be justifiable here, since equations (1) and (2) are accurate to order 
( K U ) - ~ / ~  only in the first place. 

4. The Rayleigh approximations 
The  well-known first and second Rayleigh approximations are obtained by assuming 

that the unknown tangential electric and magnetic fields in the aperture can be replaced 
by the corresponding incident fields, giving (Jones 1964) 

s = ( 2 2  + ~ , 2  + vA2 - 2YAli, cos(8, - e p ) y  
where s is the distance between the point of observation P(Rp, OD, x) and the point of integra- 
tion in the aperture ( y A ,  e,, 0), and n, is a unit vector along the x axis and normal to the 
aperture plane. With a plane wave, (0, 1, 0) exp( -ikx),  normally incident on a circular 
aperture of radius a (figure l), the axial fields from ( 1 3 )  and (14) are, by direct integration 
(Jones 1964, p. 637), 

x 
E1,(O, 0, x) = exp( - ikz)  - exp( - &(a2 + x2)1’2} (15) 

(a2 + x 2 ) 1 ’ 2  

E,,(O, 0 , ~ )  = exp( - i k x )  - exp(-ik(a2+x2)1/2}. (16 )  

T o  evaluate the field at off-axis points, ( 1 3 )  and (14) can be transformed into line integrals, 
which are more convenient for computation purposes. For comparison with the edge- 
current theory in figures 3 and 4, the second Rayleigh integral is computed from a formula 
derived from (14) by Marchand and Wolf (1962) and Wu (1966) : 

a cos 28, exp( - ikR‘) 2a2sin2 8) ( 2 1 ik) -+-+- 
2nik J o - Y  ( I -  t2 t2 (R‘)2 R 

- 

x (a-Rp COS 0) d8 

R’ = (x2 + a2 + RP2 - 2aRp cos 6) l iZ  

t = (a2 + RP2 - ~ u R ,  COS 8)1’2. 

5. Results and conclusions 
Microwave measurements at 3.2 cm wavelengths have been made inside an anechoic 

room on several conal screens constructed from aluminium sheets of 0.7 mm thickness. 
The accuracy of the geometry of the cone near the aperture was to within 1 mm, while the 
size of the screen was about 70 wavelengths, certainly large enough to simulate an infinite 
screen for measurements near the aperture. The microwave anechoic room was lined with 
absorbers, whose reflectivity was about - 50 dB at normal incidence. The  probe used was 
a slot-fed electric dipole 8 mm long, connected to a coaxial line of 2 mm outer diameter. 
The  electric field intensity measurements used a radio-frequency substitution method with 
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a calibrated reference attenuator, while the phase measurements used a homodyne method 
(Robertson 1949). The overall accuracy of the measurements was estimated to be 0.2 dB 
for the intensity measurements, and 3" for the phase measurements. 

Figures 3 and 4 show a comparison of theory and measurement of the H-plane and 
E-plane aperture electric field intensity and phase for angles of inclination a varying from 

Y 

t 
-601 

i- 
I 

60t / 

C e i t r e  o f  C S P  t r e  o f  

Figure 3. H-plane aperture field EY2(x,  0, 0) of circular aperture with inclination 
angle a,  ka = IO ( A  = 7ra/5): - - - - experiment; 0 0 0 edge-current theory 

(equation (2)); x x x second Rayleigh integral (equation (17)). 

48" to 132". The results for a = 48" H-plane measurements have already been reported by 
Tan (1968). Figures 5, 6 and 7 give the corresponding axial fields for these apertures, the 
'J. = 48" case having been omitted because it is very little different from the results for 
a = 60". In general, the edge-current theory compares well with experiment, except for 
the measured intensity ripples in the axial field for a = 120" and 132", which the edge- 
current theory is unable to account for. This is a reflection effect which occurs when the 
screen is inclined into the image side, and has been discussed in our previous report on the 
wedge-shaped screen. The  E-plane aperture field measurements for a = 48" are believed 
to be unreliable because the large and rapid intensity variations in the corresponding 
H plane of this particular aperture appear to affect the performance of the probe. 
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The remarkable feature of these results is that the effect of inclining the screen into the 
image space (a > 90") produces very little change in the diffracted field in the two screens 
measured, except for the reflection effect. For a < 90" the aperture fields are affected by the 
proximity of the reflections of the incident wave from the screen. However, even for these 
cases, the field one or two wavelengths behind the aperture shows little change. It appears 

t 

A -  r- 

.e. 

-3OC 
C e n t r e  o f  
o p e  r t u r e  

C e n t r e  o f  
a p e r t u r e  X 

X 

l 

-2 t- '"k+% 

I J X  

0 j h  h ;A 2h 0 

Figure 4. E-plane aperture field EU2(0, y, 0) of circular aperture with inclination 
angle K ,  ka = IO ( A  = m z / S ) :  - - - - experiment; 0 0 0 edge-current theory 

(equation (2)); x x x second Rayleigh integral (equation (17)). 

therefore that the influence of screen geometry is small except very near the aperture. 
Extensive measurements in other parts of the diffracted field of this three-wavelength 
aperture, of a thirteen-wavelength aperture and also of several slit apertures support this 
conclusion. 

From figures 3 and 4 the second Rayleigh integral gives results for the aperture field 
intensity and phase, whose agreement with experiment is as good as the edge-current 
theory for screens inclined into the image space ( K  > 90'). For a < 90" the presence of 
reflected waves in front of the aperture invalidates the assumption of replacing the aperture 
magnetic field by the incident field, so that for these cases agreement is poor. The  first 
Rayleigh integral predicts a constant aperture electric field equal to the incident field, which 
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Figure 5 .  Axial field intensity Eyz(O, 0, z)  of circular aperture, tl = 60°, ka = 10 
( h  = ~ a / 5 ) :  --- experiment; x x x second Rayleigh integral (equation (16)); 
A A A first Rayleigh integral (equation (15)); 0 0 0 edge-current theory (equa- 

tion ( 5 ) ) ;  - - - - EWa(O, 0, z) for circular aperture in plane screen, tl = 90". 
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Figure 5 .  Axial field intensity Eyz(O, 0, z)  of circular aperture, tl = 60°, ka = 10 
( h  = ~ a / 5 ) :  --- experiment; x x x second Rayleigh integral (equation (16)); 
A A A first Rayleigh integral (equation (15)); 0 0 0 edge-current theory (equa- 

tion ( 5 ) ) ;  - - - - EWa(O, 0, z) for circular aperture in plane screen, tl = 90". 

I 1 

2h 3h 4h 5h z 

W - 
W 

Figure 6. Axial field intensity, EW2(0, 0, z) of circular aperture, tl = 120", ka = 10: 
-- experiment; 0 0 0 edge-currrent theory (equation (5));  - - - - EY2(0, 0 ,z )  

of circular aperture in plane screen, tl = 90". 

Figure 7. Axial field intensity, Eg2(0, 0, z) of circular aperture, a = 132", Ka = 10: 
-- experiment; 0 0 0 edge-current theory (equation ( 5 ) ) ;  - - - - Elf2(0, o,z> 

for circular aperture in plane screen, C( = 90". 
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is the assumption made in equation (13) in the first place. Figure 5 indicates that both 
the Rayleigh integrals practically coincide with the edge-current theory in predicting the 
axial field intensity for distances behind the aperture larger than one wavelength. Nearer 
the aperture the second Rayleigh integral is superior. Comparisons have also been made of 
transverse scans of the field at various planes behind the aperture, and these remarks are 
consistent with these results as well. 
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